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For many, especially complex, systems, modern spectroscopic measurements can be generated as large
experimental data sets in matrix form. We report a new algorithm for the application of matrix rank analysis

to extract significant experimental information from these large matrixes. The algorithm may be used to
detect and remove erroneous rows and/or columns from the matrixes and to monitor the most significant
experimental information along the rows and/or columns of the data sets. A new method for determining the
number of absorbing species and a new concept for the treatment of experimental errors are presented. The

algorithm is illustrated on real experimental examples.

Introduction

(2) The method developed by Hugus and El-Awaidybased
on the eigenvalues A = AT x A (if p= g) or AA = A x

Matrix rank analysis (MRA) of spectroscopic data is awidely AT (if p < g).8 The determination of NIAS is therefore the
used method to determine the number of independent absorbingsame problem as solving theAx = Ax equation for alli’s

species (NIAS) either in chemically reacting or in equilibrium
systemd:® Its importance is increasing, because of the

widespread use of solid-state photodetectors in modern datare
acquisition systems. The large matrix of data produced by suchT
detection systems can be a disadvantage, however, compromis-

ing MRA and causing the method to yield ambiguous results.
In this paper we examine MRA and propose a new method for
its reliable and unambiguous implementation on large matrixes.

MRA can be applied to any experimental data set, provided
that the BeerLambert law (or any similar linear relation) is
valid:

n

A = chikekj, ie{l..p}je{l...q @)

where theA;’s are the elements of the absorption matdy),(
absorbances normalized for unit length;is the number of
absorbing specieq is the number of samples; amglis the
number of wavelengths. The symbalx stands for the
concentration of théth absorbing species, which has a molar
absorption coefficient ofy; at thejth wavelength. The meaning
of “large matrix” to characterize the system is tipat- n and/
orqg>n.

Wallacé and AinswortR pointed out that the rank & gives

the number of absorbing species. They also examined how the
rank changes in closed systems due to stoichiometric constraints
Since then, three different algorithms have been developed for

the determination of NIAS.

(1) The algorithm developed by Wallace and Kaand by
Katakis' is based on Gausslordan elimination with full
pivoting” The result of the calculation is a vectBy theith
element of which is the largest vatluén the sense of absolute
values—of the residual ofA after the (- 1)th elimination step.

and finding the nonzero eigenvalues.

(3) The third method is essentially a graphic, linearized
presentation of the first one, developed by Coleman &t al.
his nomographical technique is not as accurate as digital
computation, and the method is not further analyzed by us.

These three procedures are mathematically equivalent. Be-
cause of unavoidable experimental errors, however, the rank
calculated is always larger tham When MRA is applied, the
real problem is to decide which elements Bf or which
eigenvalues oAA are sufficiently small to discard them as data
due to experimental errors. There are several statistical
procedures developed to solve this problem:

One possibility is a calculation of standard errors for either
elements oP or eigenvalues oRA. Both procedures require
an initial estimation of the standard error of the measured data.
The reproducibility of a measuremenwhich is 0.002-0.003
absorbance unit (AU) with a modern diode-array spectrometer
helps us to estimate it. The distribution of these errors is
generally assumed to be Gaussian.

Wallace and KatZzcalculated the propagation of errdis
parallel with the process of elimination, which handles random
errors adequately. Katakisook into account computational
as well as experimental errors. Hugus and El-Awaithyro-
duced a relation between the standard errors of eigenvalues and
the original experimental errors. In each procedure, the ap-
propriate NIAS can be estimated by comparing the values to
their standard errors.

Hugus and El-Awadyused the/? test? They also used the
differences between the calculated and measured absorbances
(residuals). They counted as significant those values that were
larger than 3 times the estimated error.

In connection with factor analysis, Malinowski and How€ry
summarized statistical criteria found in the literature. Since the

The number of nonzero elements of the vector calculated this 902! Of factor analysis is very close to that of MRA, these criteria

way gives the NIAS.
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can also be applied for MRA.

Despite these efforts, applying statistical criteria is still the
most uncertain part of MRA. The conclusion from any error
treatment is highly dependent on the accuracy of the initial error
estimationt! Different statistical criteria may lead to different
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Figure 1. “Absorbance surface” of example 1 in the 'G&EDTA? —H,0, reaction. The pH was constant at 7.5. The initial concentrations of
C0'—-EDTA?Z and HO, are 0.04 and 0.0012 M, respectively.

conclusions, even if the initial error estimation is the sdafhe, absorbing species. In addition, the new algorithm localizes that
therefore, NIAS may remain questionable. range of data which carries significant information in a large
Specific Problems of Measuring and Evaluating Large data matrix without any a priori assumption of a chemical model.
Data Sets. The advantage of using modern data acquisition The essential features of the algorithm are explained and
systems is obvious: the collected data matrix includes much illustrated in the following analysis of four real experimental
more chemical information than the data collected individually. data sets.
There are, however, specific new problems that must be
carefully considered during the process of evaluation. Experimental Section
The data collected may contain instrumental errors without
any error message. The accuracy of the primary data may also Thezgata sets of (_example 1 were collected from thé-€o
change considerably in different wavelength ranges, sometimesED TA® ~H20, reaction by a Hewlett-Packard spectrophotom-
at specific wavelength(s). The data measured at the wavelengtrte": Model 8452A, in a quarz cuvette. The data set of example
of changing filter or light source are especially sensitive to 2 was recorded from Fheze3 —'CIO_2 reaction by a Hi-Tech
instrumental errors. Therefore the primary experimental data SF-61 stopped-flow instrument with built-in cuvette. The
must be filtered before further evaluation. In small data sets, temperature and the ionic strength were constant in each
filtering can be easily done by “eyes” and “hands”. In the case Solution. . .
of large matrixes it is much more difficult; a few erroneous ~ The chemical information gained from these measurements

The number of data entries used for further evaluation is €XPerimental conditions are not given. Only two experimental

usually less than the number of actually measured data values @cts are important for our present purposes:

because of computer memory limits, long computation times, (1) The photometric reproducibilitymeasured in separate
overestimated range of measurements, and other factors. ReSamples-is 0.002 AU for example 1 and 0.008 AU for example
duction of the primary data matrix must be carried out without 2. We used these values as the estimation of the standard
loss of any important information. deviation of the primary experimental data.
In using statistical procedures, it is assumed that the primary  (2) It has been demonstrated experimentdltpat at least
data are independent. This assumption is evidently valid if all four absorbing species exist in the CEEDTA*"~H,0, reac-
the data are measured in independently prepared samples. Th#éon.
absorbances measured in the same sample at adjacent wave- The following sets of kinetics data are employed to illustrate
lengths, however, carry almost the same information, since theuse of the new algorithm we have developed.
information gradually changes in small steps along the whole  Example 1. The first data set is a series of primary measured
spectrum measured. The same is true for kinetics measurementspectra without any selection or filtering. They were recorded
along the time scale. In this sense the data are not independenthetween 340 and 666 nm at every second nanometer. For this
The interdependence may cause important informatiovolved example 39 spectra are between 180 and 7024 s=(180 s),
in a specific range of the datdo disappear in the sink of errors  and 41 additional spectra are in the range 7328120 s At
when the rules for the propagation of errors are applied for large = 1020 s). Figure 1 shows the “absorbance surface”. The data
numbers of data entries. matrix consists of 80 rows and 164 columns. The second data
The aim of our work is to develop a new algorithm for the set is almost identical with the first one, but the rows and
application of MRA in order to solve the above problems. The columns including erroneous data have been removed from the
new algorithm helps to check and select the elements of theoriginally measured matrix (see below). The data matrix has
data matrix and to determine the number of independent 78 rows and 163 columns.
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TABLE 1: Initial Concentrations for the Third Data Set in deviations, the eigenvectors and thé values were also
the Co' —EDTA? —H,0, Reaction calculated. The program we used also counts the number of
no.of  [NaCo'-EDTA]o [H205]0 calculated absorbances within the rangeg—oj,Aj+ojl,
series (M) (M) pH [Aj—20i,Aj+204], and [Aj—30j,Aj+30i]. We refer to this
1.7 0.04 0.0012 75,7.1,6.9, 6.7, procedure as the HA method.
6.5,6.2,5.8
8.12 0-%462050%563-03, 0.0008 7.5 New Algorithm for Applications of MRA
13,14 0.04 ' 0.0016,0.001 7.5 Filtering Off Erroneous Rows/Columns. Filtering is based

] _ o on the following feature of large matrixes: deleting one column
_The third matrix contains filtered and selected data of 14 or row cannot cause significant change in the elements of the
different runs together. The initial concentrations of the reagents p vector and in their standard deviations. If, however, a given

are given in Table 1. The reaction was followed at 340, 350, row and/or column contains erroneous data, its omission causes
360, 520, 550, and 590 nm. Each run consists of 120 time pointssignificant change. Thereforefter the use of MRA on the

with six absorbances. The data matrix thus has 1680 rows andprimary data—we check if the omission of the rows and columns
6 columns. The selected points were chosen proportionally pelonging to the calculated elemethtas any significant effect
along the arc of the absorbance vs time curves. The originally on the result. If no significant effect is found, then the primary
measured data matrixes included 6@D0 points in a run. matrix does not contain unrealistic row(s) and/or column(s).
Example 2. The elements of this data matrix were measured Otherwise the procedure should be continued by deleting the

in the $O5*~—CIO, reaction at five different wavelengths. The  erroneous row(s)/column(s) until further omission does not have
reaction could only be followed at one wavelength at a time by 5 noticeable effect on the results.

the stopped-flow instrument used, so the different curves were  Filtering is illustrated through the first set of example 1.
recorded in physically different solutions. The absorbance rigure 1 shows the spectra recorded in their original form. For
values were measured 512 times between 0 and 0.49&Y s ( the sake of illustration we present such a view of the surface

= 0.000974 s). The experimental data before 0.01 s were 5t three defects can be noticed by eye. The absorbance drops
removed from the matrix, to avoid the influence of the dead g zero in two spectra between 396 and 434 nm. Malfunction

and mixing times. These effects could only be detected during of the data acquisition system may easily cause such effects.
the first 4 ms of the measurement. There is a “bump” on the surface at 654 nm. The probable
source of this artifact is that the output of the deuterium lamp
has a sharp peak around this wavelength.

All calculations were performed on IBM PC (DX-486) The logic and results of the filtering outlined above can be
compatible computers. The precision of real numbers was followed in Table 2. The first run of MRA by the WK method
always 19 or 20 significant figures. The programs were shows theP vector of the original matrix. By comparing;
developed in Borland Pascal. Standard versions of the math-values with their standard deviations, seven nonzero elements,
ematical algorithms were used wherever possible. Each P;—P7, can be identified. Their positions in the original matrix
program was tested through several artificial problems and realare given in the third row of run 1 in the table.

Calculations

chemical examples from the literatuie!0 Runs 2-8 show the results of MRA when the rows are
Essentially, two procedures are used for MRA in our temporarily removed one by one. Omitting the 37th or 77th

algorithm. spectrum significantly changes thevector, while the other
The first is described by Wallace and K&tzased on Gauss deletions leave th® vector virtually unmodified. Removing

Jordan elimination. The first elimination step consists of both the 37th and 77th spectra decreases the rank of the data
interchanging rows and columns and eliminating the nondiago- matrix by 2 as can be seen in run 9. This procedure proves
nal elements of the first row and column. This transformation that these two spectra contain erroneous data, so they should
can be described by the operafién be deleted permanently from the original matrix. The procedure
was repeated with the modified matrix. Runs-1@8! show the
AcA results. Since thP vectors from these runs are very similar to
A. that of run 9, no more rows need be deleted. The process was
continued by deleting the appropriate columns. Runs1i%
performed on all elements of the matrix, exceptA., where  show the results. While removing columns 1, 91, 62, or 26
A is the element whose absolute value is the largesk.in  does not change the rank Bf erasing column 158 decreases
Removing therth row andcth column ofA after applying eq  the rank by 1.
2, the rank of the remaindéx’ matrix is less by one than that Repeating the calculation with the new matrixom which
of the originalA. Now, operation 2 (eq 2) can be performed rows 37 and 77 as well as column 158 were permanently
again onA’, and this procedure can be continued until all omitted—clearly shows that no more columns need be deleted.
elements of the remainder matrix have vanished. The programThe P vectors of runs 2623 do not differ significantly from
collects the diagonal element of each elimination stg's) that of run 18. The procedure may be repeated for the rows
into P. The program also retains the positionsugdc values) again if necessary. We did so for our example, but no further
of these elements in the original matrix. These elements include significant change iP® was detected.
the most important experimental information, so their signifi- ~ The HA method is not suitable for this procedure, because
cance is paramount in any further procedure. The program alsothe eigenvalues cannot be assigned unequivocally to the rows
calculates the standard deviations of the elemeritsamicording and columns of the original matrix. Following the reviewer’s
to Wallace and Kat2. In the following, we refer to this proposal, we carried out the same calculations using the HA
procedure as the WK method. method. The required computing time was longer by 2 orders
The other method is the eigenvalue calculation detailed by of magnitude, and it was impossible to find the erroneous rows/
Hugus and El-Awady. It was performed with the help of the  columns unambiguously. We plan to compare the methods in
QL algorithm? Besides the eigenvalues and their standard this respect in a separate study.

A=A~ (2
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TABLE 2: Results of MRA Applied to Example 12

deleted
no.of """
runs rows  columns Py P, Ps3 Py Ps Ps P7 Pg P
1 LAV 1.2742 0.7122 —0.3905 0.1911 0.0366 0.0300 -0.0206 -0.0042 0.0035
o 4+0.0020 +£0.0024 +0.0029 40.0031 40.0029 4£0.0052 +£0.0041 4+£0.0032 40.0042
r,c 6,1 80, 91 37,29 1,62 61, 158 77,42 25, 26 68, 159 15,8
2 6 LAV 1.2734 0.7063 —0.3913 0.1936 0.0367 0.0301—-0.0193 —0.0043 —0.0042
3 80 LAV 1.2742 0.7103 -0.3907 0.1911 0.0340 0.0298 —0.0206 —0.0041 0.0035
4 37 LAV 1.2742 0.7122 —0.3708 0.1879 0.0367 —0.0215 —0.0042 0.0035 0.0033
5 1 LAV 1.2742 0.7122 —0.3905 0.1151 0.0365 0.0301—-0.0200 —0.0042 0.0033
6 61 LAV 1.2742 0.7122 —0.3905 0.1911 0.0359 0.0301—-0.0206 —0.0043 0.0035
7 77 LAV 1.2742 0.7122 —0.3905 0.1911 0.0366 —0.0205 —0.0042 0.0035 0.0034
8 25 LAV 1.2742 0.7122 —0.3905 0.1911 0.0366 0.0300—-0.0203 —0.0042 0.0042
9 37,77 LAV 1.2742 0.7122 0.1879 0.0367—0.0215 —0.0042 0.0035 0.0033 —0.0012
o 4+0.0020 +£0.0024 +0.0030 40.0029 40.0036 40.0032 +£0.0041 +0.0048 40.0053
r,c 6,1 80, 91 1,62 61, 158 25, 26 68, 159 15,8 35, 160 75, 96

2 P; denotes théth element ofP. LAV (largest absolute value) means this element itselfienotes its standard deviatianandc are the row
and column positions d?; in the original matrix. The second column of the table shows which rows and columns were removed from the primary
matrix before using the WK method. Boldface entries indicate a significant charige of

Reduction of the Size of the Matrix. The aim is to reduce  tency can easily be explained by taking into account that the
the size but to keep those rows and columns that carry the mosthird set contains 14 independent series of measurements, while
important information. MRA is an excellent tool for doing this the second set contains only one.

if we use the WK method. The most serious problem is that the different methods of
Let us examine the 18th run of Table 2 in detail. The largest MRA lead to different NIAS, clearly shown by the third data
deviation from zero i®, if we try to describe the matrix without  set in Table 3. The result of the WK method is consistent with
any absorbing species, i.en,= 0 in (1). If one absorbing  experiment, since the presence of at least four absorbing species
species is assumeR; gives the largest deviation. Similarly, has been shown independerifly.However, the HA method
P is the largest unexplained datum in the remainder matrix of failed to find even the possible range of NIAS.
the A’ matrix, which describes the experiments by a linear  1q check the HA method in detail, we also calculated some
combination of two absorbing species, etc. Generall; i additional statistical criteria suggested by Hugus and El-Awady.
not zero, then the matrix cannot be described bylf absorbing  sjnce the qualitative consequences were the same, only the
species, and its row and/or column contains the most importantcheck of the widely useg? test is detailed here. It uses the
information on theith species. data matrix and the initial error estimation of its elements as
The positions of the elements Bfare known in the original input data. A guess-value for NIAS must also be given. The
A matrix (third row of run 18 in Table 2). The rows and/or output is a probability between 0 and 1, which gives the
columns in these positions carry the most important experimental|ikelihood that the assumed NIAS is equal to or larger than the
information about the species. When the size of matrias  correct value. Decreasing the initial error estimation for
to be reduced, the rows and columns belonging to the elementsexammeS 1 and 4 by 0.000 16 and 0.0006 AU, respectively,
of P must not be removed. For example, if the second data setincreases the calculated NIAS by 1. It is evident that the error
of example 1 is too large, the 1st, 91st, 62nd, and 26th columnSestimation cannot be controlled within the requirements of
(the absorbance vs time curves at 340, 520, 462, and 390 nmg ccessful use of the test. Therefore, this statistical criterion
respectively) as well as the 6th, 80th, 1st, and 25th rows (the js practically useless in the case of large experimental data sets.
spectra at 1080, 48120, 180, and 4500 s, respectively) must not  pigterent interpretations of the degrees of freedom were found

be deleted. in the literatur&C regarding they? test. We used the more

Jhlora moment, we delete thesg rows and columns and US€ resirictive Malinowski definiiori? The other definition was aiso
the same procedure, the second most important rows andgyhi5ved, but the qualitative result remained the same.

columns are found, and so on. In this way, an optimal size can . .
Assuming the same error for all experimental data may be

be obtained, containing the most important information for oo
. too crude an approximation. Therefore, we also used other
further evaluation. - . .
methods for creating estimated errors. We tried absolute and

Comparison of the WK and HA Methods for MRA. We . A T Y
. relative estimations and combinations of these. The qualitative
have analyzed the examples with both methods. Table 3 .
results were the same in each case.

summarizes the results. It can be seen from the table that

different conclusions can be drawn from different data for the In conclusion, the simple MRA ‘alone is r!ot a foqlproof
same reaction and from different methods. method for determining the number of absorbing species from

Neither the WK nor the HA method gives unambiguous large data matrixes. The use of the HA method is especially
results for NIAS in every example. In general, a 95% Jangerous for three reasons: .
confidence interval is the most frequently accepted criterion, (1) The statistical procedures involved in the HA method
but the large number of data in our examples would require the Presuppose the independence of the experimental data. In any
use of a 99.7% interval. However, compariRgor 4; values practical wc_)rk with data acquisition systems, data next to each
to their standard deviations led to different NIAS with different Other are highly dependent.
confidence intervals. This fact alone suggests that a simple (2) The method requires much more calculation than the WK
MRA is not always suitable for the determination of NIAS. ~ method. Therefore, the computational error propagation may
Another apparent contradiction is that different data sets for distort the experimental data and their real errors.
the same reaction suggest different NIAS. Namely, different (3) The HA method carries out matrix multiplication for
data sets for the C'o-EDTA? —H,0; reaction give slightly creating a smaller matrix from the original one. It may easily
different NIAS, as shown in Table 3. This apparent inconsis- happen that some of the information appears only in a small



New Algorithm for Matrix Rank Analysis

TABLE 3: Determination of NIAS in Data Matrices Using Different Methods for MRA 2

NIAS
4

method

data set

3,4(?)
4,5(?)
3

WK
HA
WK

0.000328% 0.01964

—0.0036+ 0.0034
0.002H 0.0039

0.003012 0.01897

0.0035: 0.0040
—0.0101+ 0.0037

0.0216 0.0035
0.0573& 0.01913
0.019& 0.0039

0.187% 0.0030
1.568 0.01660
—0.1223+ 0.0032

0.7122- 0.0024
43.91 0.01948

1.27424+ 0.0020
A 35544 0.01941

second one of example 1 P;

0.8732- 0.0023

1095t 0.06909

1.2890+ 0.0020

2170+ 0.07447

P;
Ai

third one of example 1

HA
WK

0.003458: 0.04960

0.00482% 0.05567
0.002% 0.0121

0.0285@& 0.4913
0.0042+ 0.0116

2.26'4 0.07346
—0.0128+ 0.0155

1,2(?)

1

—0.0248+ 0.0107

0.6302+ 0.0080
38.144+ 0.0426

P;

i
a 1; denotes théth largest eigenvalues of AA. If NIAS is uncertain, a question mark indicates the less probable value. The other abbreviations are defined in the text.

example 2

HA

0.0003006: 0.01568

0.004563 0.03028

0.005948 0.0483

0.02425- 0.0431
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part of the primary matrix. The multiplication hides the
information content of that part.

Calculation and Interpretation of Residual Absorbance
Curves. We have seen that thth element of vectoP has the
largest absolute value of the remainderafter the { - 1)th
elimination step and that a serial number of a row and column
can be assigned to it. This fact opens a new approach for the
application of MRA.

Let us denote the assumed NIAS fwand calculateP 1.

The serial number of this element gives the row (or column)
that contains the most important information on the possible
existence of theng + 1)th species. If this row (or column) is
omitted and MRA is carried out again, the second most
important row (or column) is found, and so on. This gradual
omission, one by one, can be continued until omlyows (or
columns) remain. Then the calculated;; elements are plotted

as a function of their serial numbers. We may also plot the
Pm+1 values as a function of an independent variable assigned
to the serial numbers.

This method is illustrated in example 2, where it is assumed
that NIAS= 1. The calculated elements Bfare in the first
row of Table 4. The time value and the positionRafare also
indicated in the table. The row belonging R is removed
from the original matrix, and MRA is carried out again with
the remainder. Now, the nel contains the most information
about the second species, and its row in the original matrix is
also known.

This process was continued until two rows remained in the
continuously reduced data matrix. The last two steps are also
indicated in Table 4. The resultis called the residual absorbance
curve (RAC), indicating that it represents that part of the whole
time scale which cannot be described by assuming one absorbing
species.

Figure 2 contains the residual absorbance curve of example
2. The points clearly show a systematic deviation. This
deviation proves the existence of the second absorbing species.
Furthermore, one may definitely conclude that this species is
an intermediate. The course of this RAC also helps to estimate
the rate of the chemical processes in which this intermediate is
produced and transformed into a nonabsorbing species.

It should be mentioned that the formation and decomposition
of the absorbing intermediate cannot be observed visually from
the original absorbance vs time points.

Further residual absorbance curves can also be created by
increasing the assumed NIAS. We also carried out the necessary
calculations when NIAS was 2. The points of the residual curve
in this case were randomly distributed around zero.

These observations show that two absorbing species (one
reagent and one intermediate) are necessary and sufficient for
describing the primary data matrix within experimental error.

The procedure outlined can also be carried out in a modified
way: the columns are removed instead of the rows. In this
case, the unexplained residual absorbance is a function of the
wavelength. We call this function the wavelength-dependent
residual curve (WRC), while the previous function is called the
time-dependent residual curve (TRC).

We also calculated WRCs and TRCs in the! €&DTAZ —

H,0; reaction. It was emphasized above that different methods
lead to different values of NIAS in this chemical system. The
possible values were 3, 4, and 5 if a simple MRA was used
(see Table 3).

At first, four WRCs were produced from the second data set
of example 1. The assumed values for NIAS were 3, 4, 5, and
6. Figure 3 shows the results. When the assumed value of
NIAS is 3, the calculated WRC clearly shows that three
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TABLE 4: Calculation of the Residual Absorbance Curve by Assuming NIAS= 1 in Example 2
position of time at
removed rows P P P.(r, ©) P2 (s) E Py Ps
0.6302 —0.0248 76,3 0.08379 —0.0128 0.0042 0.0029
76 0.6302 —0.0229 80,3 0.08769 —0.0114 0.0044 —0.0029
76, 80 0.6302 —0.0228 89,3 0.09645 —0.0109 0.0044 —0.0035
76, 80, 89 0.6302 —0.0225 108, 3 0.11496 —0.0114 0.0049 —0.0031
allbut 1, 2, 278, 450 0.6302 0.0018 450, 3 0.44806 —0.0012 —0.0099 0.0003
allbut1, 2,278 0.6302 —0.0016 278, 4 0.28053 —0.0010 —0.0099 0.0003
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Figure 2. Time-dependent residual absorbance curve in #@?S—ClO, reaction. One absorbing species was assumed for the data matrix of
example 2.
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Figure 3. Four wavelength-dependent residual absorbance curves in theBDI A2~—H,0, reaction. The second data matrix of example 1 was
used in the calculations.

absorbing species are not sufficient for describing the experi- from this figure is the existence of the fifth absorbing species.
ments. The unexplained residual values are large and theThere are some portions of WRCs where a nonrandom deviation
variation of the function is not random. can be seen (34890 nm and 536610 nm). However, these

It is also clear that five absorbing species are sufficient to differences are small.
describe the data matrix within experimental error. There are  To decide between the existence of four or five absorbing
no significant differences between WRCs calculated with NIAS species, we calculated TRCs for the third set. This data set
=5 or 6 values. Furthermore, the distribution of the points is contains much more experimental information about th&-Co
random within the experimental deviations. What is uncertain EDTA2"—H,0, reaction. The results are illustrated in Figure
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first (or last) row (or column) is always deleted before a new
eigenvalue calculation. The authors had to choose this approach
because the determination of the eigenvalues does not give the
position of the element carrying the most important information.
We have applied EFA to all of our examples. We have found
that much more, and localized, information can be gained from
RAC than from EFA.

nce
0.002

Discussion

Our calculations on and analysis of real examples clearly
show that the use of MRA requires special care and a special
algorithm for data given by modern data acquisition systems.
The advantages of the procedures presented are as follows:

Erroneous experimental data may be readily filtered out.

The size of the data matrix can be adjusted for the require-
ments of a further evaluation procedure in a way that preserves
the most important information. The extent of the information
content can be monitored along the rows and/or columns.

The number of independent absorbing species may be
Figure 4. Time-dependent residual absorbance curves in tHe-Co  determined unambiguously. We have shown that the HA
EDTA? —H,0, reaction. The third data matrix of example 1 was used method for MRA may give misleading information in the case

in the calculations. The lower series of curves was created by assumindof large matrixes, because its statistical criteria are not valid
four absorbing species; five absorbing species were used in the upper;

series of curves. The box around the upper series delineates the Iargestor the dat.a produced k_)y modern data vaUIsmc.m SySteme
residual. Calculation of the residual absorbance curves is an especially
valuable tool to decide on the number of independent absorbing

4. The absolute RAC is drawn for the sake of clarity. The Species, to detect the presence of intermediates, and even to
lower series of curves clearly demonstrates that four absorbinglocalize their appearance in time or along the wavelength scale.
species are not sufficient for describing the data matrix. There A systematic comparison of the different and mathematically
are large residual values, and their behavior is not random. Oneequivalent methods for MRA shows th"?‘t only the prpcedure
may also find correlations between the height of the peaks andsuggested by Wallace and Katg appropriate for MRA in the
initial conditions given in Table 1. case of large matrixes.

The upper series of curves in Figure 4 was calculated by _
taking NIAS = 5. The values of these curves are small; the Conclusion
largest is 0.002 08 absorbance unit. This value is roughly equal : : :
o %he estimated error. The points are randoml digstri)l/:)u'?ed On the basis of the results presented, the following algorithm

. o : P y - for the application of MRA is suggested.

One might be inclined to conclude that these curves have peaks i h d col L |
aroundt = 1000 s, but 22% of the experimental data are found Filter out the rows and columns containing instrumenta
; y o . errors.
In the range §2000 s, which is only 4% of the time range. Calculate the residual absorbance curves along the rows and
The higher density of experimental points at the beginning of L : . 9 -
the curves causes the illusion of unexplained peaks. °°'“’T‘“S assuming increasing numbers of mdepen@ent absorb.lng

Based on the residual absorbance curves. the existence ofPECieS until the residuals are random and are in accord with
five linearly independent absorbing species is the most reason- heRagcurai:ﬁ/ of'the Ifntsr:rume?j[. ding to th . ¢
able conclusion. The example also illustrates two important educe he size of the matrix according to the requirements

Absolute Residual Absorba

0.002 0.004 0.006 0.008 0.010

facts of the further evaluation procedure.
(1) The residual absorbance curves can also be calculated if . "
more experimental runs are involved in one data matrix. Acknowledgment. The authors thank Attila Hof¢h for

2) Without sufficient experimental information, any applica- providing the data matr_ix of example 2. _This work was
tio(n)of MRA fails to gi\F/)e acceptable results. I)—/|ov?/2ver, supported by the Hungarian _Academ_y of Sciences _(Grant No.
inappropriate evaluation technigues can also obscure the extractp TKAJF-020863), by the National SC'e“C? Foundatlon (Grant
able information. No. CHE-9615834), and by a U.S.-Hungarian cooperative grant.

The wavelength-dependent residual absorbance curve can also Supporting Information Available:  The proarams used for
be useful if the size of the original matrix must be reduced. MRpr N9 ilabl thl hV ' ) IfTPg bs li/S\IWW ¢
Larger values in a WRC indicate the wavelengths where the o/t a_ret av_alza ed hr?ugb/ %n?nr;gnrpaolﬁwsraxxxo;( ywh ; X)?X
measurements carry more information. For example, it can be. p-/ITtp.Jate. u-szeged.nupub/cne -EXe, where
seen in Figure 3 that the measured absorbances at 390, 49 s the version number. The. dat_a sets Qf the examples can also
and 575 nm carry the most important information about the me fourndi:tZithe séamnedlocia;tlo)?trm H:\e ff||emr]nrapaper.exe. Both
fourth absorbing species. In addition, the values at 350 nm give esare pped and seli-extracting form.
us information about the fifth absorbing species. Ref d Not
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