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For many, especially complex, systems, modern spectroscopic measurements can be generated as large
experimental data sets in matrix form. We report a new algorithm for the application of matrix rank analysis
to extract significant experimental information from these large matrixes. The algorithm may be used to
detect and remove erroneous rows and/or columns from the matrixes and to monitor the most significant
experimental information along the rows and/or columns of the data sets. A new method for determining the
number of absorbing species and a new concept for the treatment of experimental errors are presented. The
algorithm is illustrated on real experimental examples.

Introduction

Matrix rank analysis (MRA) of spectroscopic data is a widely
used method to determine the number of independent absorbing
species (NIAS) either in chemically reacting or in equilibrium
systems.1-6 Its importance is increasing, because of the
widespread use of solid-state photodetectors in modern data
acquisition systems. The large matrix of data produced by such
detection systems can be a disadvantage, however, compromis-
ing MRA and causing the method to yield ambiguous results.
In this paper we examine MRA and propose a new method for
its reliable and unambiguous implementation on large matrixes.
MRA can be applied to any experimental data set, provided

that the Beer-Lambert law (or any similar linear relation) is
valid:

where theAij ’s are the elements of the absorption matrix (A),
absorbances normalized for unit length;n is the number of
absorbing species;p is the number of samples; andq is the
number of wavelengths. The symbolcik stands for the
concentration of thekth absorbing species, which has a molar
absorption coefficient ofεkj at thejth wavelength. The meaning
of “large matrix” to characterize the system is thatp . n and/
or q . n.
Wallace1 and Ainsworth2 pointed out that the rank ofA gives

the number of absorbing species. They also examined how the
rank changes in closed systems due to stoichiometric constraints.
Since then, three different algorithms have been developed for
the determination of NIAS.
(1) The algorithm developed by Wallace and Katz3 and by

Katakis4 is based on Gauss-Jordan elimination with full
pivoting.7 The result of the calculation is a vectorP, the ith
element of which is the largest valuesin the sense of absolute
valuessof the residual ofA after the (i - 1)th elimination step.
The number of nonzero elements of the vector calculated this
way gives the NIAS.

(2) The method developed by Hugus and El-Awady5 is based
on the eigenvalues ofAA ) AT × A (if p g q) or AA ) A ×
AT (if p e q).8 The determination of NIAS is therefore the
same problem as solving theAAx ) λx equation for allλ’s
and finding the nonzero eigenvalues.
(3) The third method is essentially a graphic, linearized

representation of the first one, developed by Coleman et al.6

This nomographical technique is not as accurate as digital
computation, and the method is not further analyzed by us.
These three procedures are mathematically equivalent. Be-

cause of unavoidable experimental errors, however, the rank
calculated is always larger thann. When MRA is applied, the
real problem is to decide which elements ofP or which
eigenvalues ofAA are sufficiently small to discard them as data
due to experimental errors. There are several statistical
procedures developed to solve this problem:
One possibility is a calculation of standard errors for either

elements ofP or eigenvalues ofAA . Both procedures require
an initial estimation of the standard error of the measured data.
The reproducibility of a measurementswhich is 0.002-0.003
absorbance unit (AU) with a modern diode-array spectrometers
helps us to estimate it. The distribution of these errors is
generally assumed to be Gaussian.
Wallace and Katz3 calculated the propagation of errors9 in

parallel with the process of elimination, which handles random
errors adequately. Katakis4 took into account computational
as well as experimental errors. Hugus and El-Awady5 intro-
duced a relation between the standard errors of eigenvalues and
the original experimental errors. In each procedure, the ap-
propriate NIAS can be estimated by comparing the values to
their standard errors.
Hugus and El-Awady5 used theø2 test.7 They also used the

differences between the calculated and measured absorbances
(residuals). They counted as significant those values that were
larger than 3 times the estimated error.
In connection with factor analysis, Malinowski and Howery10

summarized statistical criteria found in the literature. Since the
goal of factor analysis is very close to that of MRA, these criteria
can also be applied for MRA.
Despite these efforts, applying statistical criteria is still the

most uncertain part of MRA. The conclusion from any error
treatment is highly dependent on the accuracy of the initial error
estimation.11 Different statistical criteria may lead to different
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Aij ) ∑
k)1

n

cik∈kj, i ∈ {1,...,p}, j ∈ {1,...,q} (1)
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conclusions, even if the initial error estimation is the same,10

therefore, NIAS may remain questionable.
Specific Problems of Measuring and Evaluating Large

Data Sets. The advantage of using modern data acquisition
systems is obvious: the collected data matrix includes much
more chemical information than the data collected individually.
There are, however, specific new problems that must be
carefully considered during the process of evaluation.
The data collected may contain instrumental errors without

any error message. The accuracy of the primary data may also
change considerably in different wavelength ranges, sometimes
at specific wavelength(s). The data measured at the wavelength
of changing filter or light source are especially sensitive to
instrumental errors. Therefore the primary experimental data
must be filtered before further evaluation. In small data sets,
filtering can be easily done by “eyes” and “hands”. In the case
of large matrixes it is much more difficult; a few erroneous
data may easily lie hidden among many others.
The number of data entries used for further evaluation is

usually less than the number of actually measured data values,
because of computer memory limits, long computation times,
overestimated range of measurements, and other factors. Re-
duction of the primary data matrix must be carried out without
loss of any important information.
In using statistical procedures, it is assumed that the primary

data are independent. This assumption is evidently valid if all
the data are measured in independently prepared samples. The
absorbances measured in the same sample at adjacent wave-
lengths, however, carry almost the same information, since the
information gradually changes in small steps along the whole
spectrum measured. The same is true for kinetics measurements
along the time scale. In this sense the data are not independent.
The interdependence may cause important informationsinvolved
in a specific range of the datasto disappear in the sink of errors
when the rules for the propagation of errors are applied for large
numbers of data entries.
The aim of our work is to develop a new algorithm for the

application of MRA in order to solve the above problems. The
new algorithm helps to check and select the elements of the
data matrix and to determine the number of independent

absorbing species. In addition, the new algorithm localizes that
range of data which carries significant information in a large
data matrix without any a priori assumption of a chemical model.
The essential features of the algorithm are explained and
illustrated in the following analysis of four real experimental
data sets.

Experimental Section

The data sets of example 1 were collected from the CoII-
EDTA2--H2O2 reaction by a Hewlett-Packard spectrophotom-
eter, Model 8452A, in a quartz cuvette. The data set of example
2 was recorded from the S2O3

2--•ClO2 reaction by a Hi-Tech
SF-61 stopped-flow instrument with built-in cuvette. The
temperature and the ionic strength were constant in each
solution.
The chemical information gained from these measurements

will be published separately.12,13 Therefore, the detailed
experimental conditions are not given. Only two experimental
facts are important for our present purposes:
(1) The photometric reproducibilitysmeasured in separate

samplessis 0.002 AU for example 1 and 0.008 AU for example
2. We used these values as the estimation of the standard
deviation of the primary experimental data.
(2) It has been demonstrated experimentally12 that at least

four absorbing species exist in the CoII-EDTA2--H2O2 reac-
tion.
The following sets of kinetics data are employed to illustrate

use of the new algorithm we have developed.
Example 1. The first data set is a series of primary measured

spectra without any selection or filtering. They were recorded
between 340 and 666 nm at every second nanometer. For this
example 39 spectra are between 180 and 7020 s (∆t ) 180 s),
and 41 additional spectra are in the range 7320-48 120 s (∆t
) 1020 s). Figure 1 shows the “absorbance surface”. The data
matrix consists of 80 rows and 164 columns. The second data
set is almost identical with the first one, but the rows and
columns including erroneous data have been removed from the
originally measured matrix (see below). The data matrix has
78 rows and 163 columns.

Figure 1. “Absorbance surface” of example 1 in the CoII-EDTA2--H2O2 reaction. The pH was constant at 7.5. The initial concentrations of
CoII-EDTA2- and H2O2 are 0.04 and 0.0012 M, respectively.
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The third matrix contains filtered and selected data of 14
different runs together. The initial concentrations of the reagents
are given in Table 1. The reaction was followed at 340, 350,
360, 520, 550, and 590 nm. Each run consists of 120 time points
with six absorbances. The data matrix thus has 1680 rows and
6 columns. The selected points were chosen proportionally
along the arc of the absorbance vs time curves. The originally
measured data matrixes included 600-800 points in a run.
Example 2. The elements of this data matrix were measured

in the S2O3
2--•ClO2 reaction at five different wavelengths. The

reaction could only be followed at one wavelength at a time by
the stopped-flow instrument used, so the different curves were
recorded in physically different solutions. The absorbance
values were measured 512 times between 0 and 0.4977 s (∆t
) 0.000 974 s). The experimental data before 0.01 s were
removed from the matrix, to avoid the influence of the dead
and mixing times. These effects could only be detected during
the first 4 ms of the measurement.

Calculations

All calculations were performed on IBM PC (DX-486)
compatible computers. The precision of real numbers was
always 19 or 20 significant figures. The programs were
developed in Borland Pascal. Standard versions of the math-
ematical algorithms7 were used wherever possible. Each
program was tested through several artificial problems and real
chemical examples from the literature.3,5,10

Essentially, two procedures are used for MRA in our
algorithm.
The first is described by Wallace and Katz,3 based on Gauss-

Jordan elimination. The first elimination step consists of
interchanging rows and columns and eliminating the nondiago-
nal elements of the first row and column. This transformation
can be described by the operation3,7

performed on all elements of theA matrix, exceptArc, where
Arc is the element whose absolute value is the largest inA.
Removing therth row andcth column ofA after applying eq
2, the rank of the remainderA′ matrix is less by one than that
of the originalA. Now, operation 2 (eq 2) can be performed
again onA′, and this procedure can be continued until all
elements of the remainder matrix have vanished. The program
collects the diagonal element of each elimination step (Arc’s)
into P. The program also retains the positions (r andc values)
of these elements in the original matrix. These elements include
the most important experimental information, so their signifi-
cance is paramount in any further procedure. The program also
calculates the standard deviations of the elements ofP according
to Wallace and Katz.3 In the following, we refer to this
procedure as the WK method.
The other method is the eigenvalue calculation detailed by

Hugus and El-Awady.5 It was performed with the help of the
QL algorithm.7 Besides the eigenvalues and their standard

deviations, the eigenvectors and theø2 values were also
calculated. The program we used also counts the number of
calculated absorbances within the ranges [Aij-σij,Aij+σij],
[Aij-2σij,Aij+2σij], and [Aij-3σij,Aij+3σij]. We refer to this
procedure as the HA method.

New Algorithm for Applications of MRA

Filtering Off Erroneous Rows/Columns. Filtering is based
on the following feature of large matrixes: deleting one column
or row cannot cause significant change in the elements of the
P vector and in their standard deviations. If, however, a given
row and/or column contains erroneous data, its omission causes
significant change. Thereforesafter the use of MRA on the
primary dataswe check if the omission of the rows and columns
belonging to the calculated elementshas any significant effect
on the result. If no significant effect is found, then the primary
matrix does not contain unrealistic row(s) and/or column(s).
Otherwise the procedure should be continued by deleting the
erroneous row(s)/column(s) until further omission does not have
a noticeable effect on the results.
Filtering is illustrated through the first set of example 1.

Figure 1 shows the spectra recorded in their original form. For
the sake of illustration we present such a view of the surface
that three defects can be noticed by eye. The absorbance drops
to zero in two spectra between 396 and 434 nm. Malfunction
of the data acquisition system may easily cause such effects.
There is a “bump” on the surface at 654 nm. The probable
source of this artifact is that the output of the deuterium lamp
has a sharp peak around this wavelength.
The logic and results of the filtering outlined above can be

followed in Table 2. The first run of MRA by the WK method
shows theP vector of the original matrix. By comparingPi
values with their standard deviations, seven nonzero elements,
P1-P7, can be identified. Their positions in the original matrix
are given in the third row of run 1 in the table.
Runs 2-8 show the results of MRA when the rows are

temporarily removed one by one. Omitting the 37th or 77th
spectrum significantly changes theP vector, while the other
deletions leave theP vector virtually unmodified. Removing
both the 37th and 77th spectra decreases the rank of the data
matrix by 2 as can be seen in run 9. This procedure proves
that these two spectra contain erroneous data, so they should
be deleted permanently from the original matrix. The procedure
was repeated with the modified matrix. Runs 10-14 show the
results. Since theP vectors from these runs are very similar to
that of run 9, no more rows need be deleted. The process was
continued by deleting the appropriate columns. Runs 15-19
show the results. While removing columns 1, 91, 62, or 26
does not change the rank ofP; erasing column 158 decreases
the rank by 1.
Repeating the calculation with the new matrixsfrom which

rows 37 and 77 as well as column 158 were permanently
omittedsclearly shows that no more columns need be deleted.
TheP vectors of runs 20-23 do not differ significantly from
that of run 18. The procedure may be repeated for the rows
again if necessary. We did so for our example, but no further
significant change inP was detected.
The HA method is not suitable for this procedure, because

the eigenvalues cannot be assigned unequivocally to the rows
and columns of the original matrix. Following the reviewer’s
proposal, we carried out the same calculations using the HA
method. The required computing time was longer by 2 orders
of magnitude, and it was impossible to find the erroneous rows/
columns unambiguously. We plan to compare the methods in
this respect in a separate study.

TABLE 1: Initial Concentrations for the Third Data Set in
the CoII-EDTA2--H2O2 Reaction

no. of
series

[Na2CoII-EDTA]0
(M)

[H2O2]0
(M) pH

1.7 0.04 0.0012 7.5, 7.1, 6.9, 6.7,
6.5, 6.2, 5.8

8.12 0.04, 0.035, 0.03,
0.025, 0.02

0.0008 7.5

13, 14 0.04 0.0016, 0.001 7.5

Aij ′ ) Aij -
AicArj
Arc

(2)
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Reduction of the Size of the Matrix. The aim is to reduce
the size but to keep those rows and columns that carry the most
important information. MRA is an excellent tool for doing this
if we use the WK method.
Let us examine the 18th run of Table 2 in detail. The largest

deviation from zero isP1 if we try to describe the matrix without
any absorbing species, i.e.,n ) 0 in (1). If one absorbing
species is assumed,P2 gives the largest deviation. Similarly,
P3 is the largest unexplained datum in the remainder matrix of
the A′ matrix, which describes the experiments by a linear
combination of two absorbing species, etc. Generally, ifPi is
not zero, then the matrix cannot be described by (i - 1) absorbing
species, and its row and/or column contains the most important
information on theith species.
The positions of the elements ofP are known in the original

A matrix (third row of run 18 in Table 2). The rows and/or
columns in these positions carry the most important experimental
information about the species. When the size of matrixA has
to be reduced, the rows and columns belonging to the elements
of Pmust not be removed. For example, if the second data set
of example 1 is too large, the 1st, 91st, 62nd, and 26th columns
(the absorbance vs time curves at 340, 520, 462, and 390 nm,
respectively) as well as the 6th, 80th, 1st, and 25th rows (the
spectra at 1080, 48120, 180, and 4500 s, respectively) must not
be deleted.
If, for a moment, we delete these rows and columns and use

the same procedure, the second most important rows and
columns are found, and so on. In this way, an optimal size can
be obtained, containing the most important information for
further evaluation.
Comparison of the WK and HA Methods for MRA. We

have analyzed the examples with both methods. Table 3
summarizes the results. It can be seen from the table that
different conclusions can be drawn from different data for the
same reaction and from different methods.
Neither the WK nor the HA method gives unambiguous

results for NIAS in every example. In general, a 95%
confidence interval is the most frequently accepted criterion,
but the large number of data in our examples would require the
use of a 99.7% interval. However, comparingPi or λi values
to their standard deviations led to different NIAS with different
confidence intervals. This fact alone suggests that a simple
MRA is not always suitable for the determination of NIAS.
Another apparent contradiction is that different data sets for

the same reaction suggest different NIAS. Namely, different
data sets for the CoII-EDTA2--H2O2 reaction give slightly
different NIAS, as shown in Table 3. This apparent inconsis-

tency can easily be explained by taking into account that the
third set contains 14 independent series of measurements, while
the second set contains only one.
The most serious problem is that the different methods of

MRA lead to different NIAS, clearly shown by the third data
set in Table 3. The result of the WK method is consistent with
experiment, since the presence of at least four absorbing species
has been shown independently.12 However, the HA method
failed to find even the possible range of NIAS.
To check the HA method in detail, we also calculated some

additional statistical criteria suggested by Hugus and El-Awady.5

Since the qualitative consequences were the same, only the
check of the widely usedø2 test is detailed here. It uses the
data matrix and the initial error estimation of its elements as
input data. A guess-value for NIAS must also be given. The
output is a probability between 0 and 1, which gives the
likelihood that the assumed NIAS is equal to or larger than the
correct value. Decreasing the initial error estimation for
examples 1 and 4 by 0.000 16 and 0.0006 AU, respectively,
increases the calculated NIAS by 1. It is evident that the error
estimation cannot be controlled within the requirements of
successful use of theø2 test. Therefore, this statistical criterion
is practically useless in the case of large experimental data sets.
Different interpretations of the degrees of freedom were found

in the literature5,10 regarding theø2 test. We used the more
restrictive Malinowski definition.10 The other definition was also
employed, but the qualitative result remained the same.
Assuming the same error for all experimental data may be

too crude an approximation. Therefore, we also used other
methods for creating estimated errors. We tried absolute and
relative estimations and combinations of these. The qualitative
results were the same in each case.
In conclusion, the simple MRA alone is not a foolproof

method for determining the number of absorbing species from
large data matrixes. The use of the HA method is especially
dangerous for three reasons:
(1) The statistical procedures involved in the HA method

presuppose the independence of the experimental data. In any
practical work with data acquisition systems, data next to each
other are highly dependent.
(2) The method requires much more calculation than the WK

method. Therefore, the computational error propagation may
distort the experimental data and their real errors.
(3) The HA method carries out matrix multiplication for

creating a smaller matrix from the original one. It may easily
happen that some of the information appears only in a small

TABLE 2: Results of MRA Applied to Example 1a

deleted
no. of
runs rows columns P1 P2 P3 P4 P5 P6 P7 P8 P9

1 LAV 1.2742 0.7122 -0.3905 0.1911 0.0366 0.0300 -0.0206 -0.0042 0.0035
σ (0.0020 (0.0024 (0.0029 (0.0031 (0.0029 (0.0052 (0.0041 (0.0032 (0.0042
r,c 6,1 80, 91 37, 29 1, 62 61, 158 77, 42 25, 26 68, 159 15, 8

2 6 LAV 1.2734 0.7063 -0.3913 0.1936 0.0367 0.0301-0.0193 -0.0043 -0.0042
3 80 LAV 1.2742 0.7103 -0.3907 0.1911 0.0340 0.0298-0.0206 -0.0041 0.0035
4 37 LAV 1.2742 0.7122 -0.3708 0.1879 0.0367 -0.0215 -0.0042 0.0035 0.0033
5 1 LAV 1.2742 0.7122 -0.3905 0.1151 0.0365 0.0301-0.0200 -0.0042 0.0033
6 61 LAV 1.2742 0.7122 -0.3905 0.1911 0.0359 0.0301-0.0206 -0.0043 0.0035
7 77 LAV 1.2742 0.7122 -0.3905 0.1911 0.0366 -0.0205 -0.0042 0.0035 0.0034
8 25 LAV 1.2742 0.7122 -0.3905 0.1911 0.0366 0.0300-0.0203 -0.0042 0.0042
9 37, 77 LAV 1.2742 0.7122 0.1879 0.0367-0.0215 -0.0042 0.0035 0.0033 -0.0012

σ (0.0020 (0.0024 (0.0030 (0.0029 (0.0036 (0.0032 (0.0041 (0.0048 (0.0053
r, c 6, 1 80, 91 1, 62 61, 158 25, 26 68, 159 15, 8 35, 160 75, 96

a Pi denotes theith element ofP. LAV (largest absolute value) means this element itself,σ denotes its standard deviation,r andc are the row
and column positions ofPi in the original matrix. The second column of the table shows which rows and columns were removed from the primary
matrix before using the WK method. Boldface entries indicate a significant change ofP.
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part of the primary matrix. The multiplication hides the
information content of that part.
Calculation and Interpretation of Residual Absorbance

Curves. We have seen that theith element of vectorP has the
largest absolute value of the remainderA after the (i - 1)th
elimination step and that a serial number of a row and column
can be assigned to it. This fact opens a new approach for the
application of MRA.
Let us denote the assumed NIAS bym and calculatePm+1.

The serial number of this element gives the row (or column)
that contains the most important information on the possible
existence of the (m+ 1)th species. If this row (or column) is
omitted and MRA is carried out again, the second most
important row (or column) is found, and so on. This gradual
omission, one by one, can be continued until onlym rows (or
columns) remain. Then the calculatedPm+1 elements are plotted
as a function of their serial numbers. We may also plot the
Pm+1 values as a function of an independent variable assigned
to the serial numbers.
This method is illustrated in example 2, where it is assumed

that NIAS) 1. The calculated elements ofP are in the first
row of Table 4. The time value and the position ofP2 are also
indicated in the table. The row belonging toP2 is removed
from the original matrix, and MRA is carried out again with
the remainder. Now, the newP2 contains the most information
about the second species, and its row in the original matrix is
also known.
This process was continued until two rows remained in the

continuously reduced data matrix. The last two steps are also
indicated in Table 4. The result is called the residual absorbance
curve (RAC), indicating that it represents that part of the whole
time scale which cannot be described by assuming one absorbing
species.
Figure 2 contains the residual absorbance curve of example

2. The points clearly show a systematic deviation. This
deviation proves the existence of the second absorbing species.
Furthermore, one may definitely conclude that this species is
an intermediate. The course of this RAC also helps to estimate
the rate of the chemical processes in which this intermediate is
produced and transformed into a nonabsorbing species.
It should be mentioned that the formation and decomposition

of the absorbing intermediate cannot be observed visually from
the original absorbance vs time points.
Further residual absorbance curves can also be created by

increasing the assumed NIAS. We also carried out the necessary
calculations when NIAS was 2. The points of the residual curve
in this case were randomly distributed around zero.
These observations show that two absorbing species (one

reagent and one intermediate) are necessary and sufficient for
describing the primary data matrix within experimental error.
The procedure outlined can also be carried out in a modified

way: the columns are removed instead of the rows. In this
case, the unexplained residual absorbance is a function of the
wavelength. We call this function the wavelength-dependent
residual curve (WRC), while the previous function is called the
time-dependent residual curve (TRC).
We also calculated WRCs and TRCs in the CoII-EDTA2--

H2O2 reaction. It was emphasized above that different methods
lead to different values of NIAS in this chemical system. The
possible values were 3, 4, and 5 if a simple MRA was used
(see Table 3).
At first, four WRCs were produced from the second data set

of example 1. The assumed values for NIAS were 3, 4, 5, and
6. Figure 3 shows the results. When the assumed value of
NIAS is 3, the calculated WRC clearly shows that threeT
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absorbing species are not sufficient for describing the experi-
ments. The unexplained residual values are large and the
variation of the function is not random.
It is also clear that five absorbing species are sufficient to

describe the data matrix within experimental error. There are
no significant differences between WRCs calculated with NIAS
) 5 or 6 values. Furthermore, the distribution of the points is
random within the experimental deviations. What is uncertain

from this figure is the existence of the fifth absorbing species.
There are some portions of WRCs where a nonrandom deviation
can be seen (340-390 nm and 530-610 nm). However, these
differences are small.
To decide between the existence of four or five absorbing

species, we calculated TRCs for the third set. This data set
contains much more experimental information about the CoII-
EDTA2--H2O2 reaction. The results are illustrated in Figure

TABLE 4: Calculation of the Residual Absorbance Curve by Assuming NIAS) 1 in Example 2

removed rows P1 P1
position of
P1 (r, c)

time at
P2 (s) P3 P4 P5

0.6302 -0.0248 76, 3 0.08379 -0.0128 0.0042 0.0029
76 0.6302 -0.0229 80, 3 0.08769 -0.0114 0.0044 -0.0029
76, 80 0.6302 -0.0228 89, 3 0.09645 -0.0109 0.0044 -0.0035
76, 80, 89 0.6302 -0.0225 108, 3 0.11496 -0.0114 0.0049 -0.0031
all but 1, 2, 278, 450 0.6302 0.0018 450, 3 0.44806 -0.0012 -0.0099 0.0003
all but 1, 2, 278 0.6302 -0.0016 278, 4 0.28053 -0.0010 -0.0099 0.0003

Figure 2. Time-dependent residual absorbance curve in the S2O3
2--•ClO2 reaction. One absorbing species was assumed for the data matrix of

example 2.

Figure 3. Four wavelength-dependent residual absorbance curves in the CoII-EDTA2--H2O2 reaction. The second data matrix of example 1 was
used in the calculations.
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4. The absolute RAC is drawn for the sake of clarity. The
lower series of curves clearly demonstrates that four absorbing
species are not sufficient for describing the data matrix. There
are large residual values, and their behavior is not random. One
may also find correlations between the height of the peaks and
initial conditions given in Table 1.
The upper series of curves in Figure 4 was calculated by

taking NIAS) 5. The values of these curves are small; the
largest is 0.002 08 absorbance unit. This value is roughly equal
to the estimated error. The points are randomly distributed.
One might be inclined to conclude that these curves have peaks
aroundt ) 1000 s, but 22% of the experimental data are found
in the range 0-2000 s, which is only 4% of the time range.
The higher density of experimental points at the beginning of
the curves causes the illusion of unexplained peaks.
Based on the residual absorbance curves, the existence of

five linearly independent absorbing species is the most reason-
able conclusion. The example also illustrates two important
facts.
(1) The residual absorbance curves can also be calculated if

more experimental runs are involved in one data matrix.
(2) Without sufficient experimental information, any applica-

tion of MRA fails to give acceptable results. However,
inappropriate evaluation techniques can also obscure the extract-
able information.
The wavelength-dependent residual absorbance curve can also

be useful if the size of the original matrix must be reduced.
Larger values in a WRC indicate the wavelengths where the
measurements carry more information. For example, it can be
seen in Figure 3 that the measured absorbances at 390, 490,
and 575 nm carry the most important information about the
fourth absorbing species. In addition, the values at 350 nm give
us information about the fifth absorbing species.
Another technique in the literature15-17 is somewhat similar

to the calculation of residual absorbance curves. Gampp et al.
call their method evolving factor analysis (EFA). Through EFA,
the rows or columns are also removed systematically and the
eigenvalues ofAA are calculated. However, the order of
removal is determined before any calculation and is not an
inherent part of the calculation process. For example, the actual

first (or last) row (or column) is always deleted before a new
eigenvalue calculation. The authors had to choose this approach
because the determination of the eigenvalues does not give the
position of the element carrying the most important information.
We have applied EFA to all of our examples. We have found
that much more, and localized, information can be gained from
RAC than from EFA.

Discussion

Our calculations on and analysis of real examples clearly
show that the use of MRA requires special care and a special
algorithm for data given by modern data acquisition systems.
The advantages of the procedures presented are as follows:
Erroneous experimental data may be readily filtered out.
The size of the data matrix can be adjusted for the require-

ments of a further evaluation procedure in a way that preserves
the most important information. The extent of the information
content can be monitored along the rows and/or columns.
The number of independent absorbing species may be

determined unambiguously. We have shown that the HA
method for MRA may give misleading information in the case
of large matrixes, because its statistical criteria are not valid
for the data produced by modern data acquisition systems.
Calculation of the residual absorbance curves is an especially

valuable tool to decide on the number of independent absorbing
species, to detect the presence of intermediates, and even to
localize their appearance in time or along the wavelength scale.
A systematic comparison of the different and mathematically

equivalent methods for MRA shows that only the procedure
suggested by Wallace and Katz3 is appropriate for MRA in the
case of large matrixes.

Conclusion

On the basis of the results presented, the following algorithm
for the application of MRA is suggested.
Filter out the rows and columns containing instrumental

errors.
Calculate the residual absorbance curves along the rows and

columns assuming increasing numbers of independent absorbing
species until the residuals are random and are in accord with
the accuracy of the instrument.
Reduce the size of the matrix according to the requirements

of the further evaluation procedure.
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